
N91-10607

0

EVOLVING IMPACT OF ADA ON A _'/i"

PRODUCTION SOFTWARE ENVIRONMENT

F. McGarry (NASA/GSFC)

L. Esker (CSC)

K. Quimby (CSC)

5j C

°.

1.0 BACKGROUND (Chart i)

Since 1985, the Software Engineering Laboratory (SEL) has been

studying the impact of Ada and Ada-related technologies on the

software development of production projects within the Flight

Dynamics Division (FDD) at NASA/GSFC. Until then, all software

development projects had used FORTRAN as the primary implemen-

tation language. The Ada development work began with a pilot

project and a research project that paralleled a production

FORTRAN development project (References 1 and 2). After this

initial Ada experience, several later production projects were

developed in Ada. For each project, the SEL has collected such

detailed information as resource data, error data, component

information, methodology, and project characteristics, so that

the SEL could study the evolution of the use of Ada itself and

the actual characteristics of the Ada development process

(Reference 3).

Analysis of the Ada projects has led personnel to document

lessons learned during the development of Ada projects

(References 4 through 7). These lessons have provided valuable

insight into the impact of Ada, especially in the following

areas:

F. McGarry
NASA/GSFC
! of 33

i o The impact of Ada on the software development process,

that is, the impact Ada has on such measures as productivity,

reliability, and maintainability.

, The impact of Ada over time, as shown by the differences

between the first, second, and third Ada projects.

.
The use of Ada and Ada features as the development environ-

ment gains more experience in using Ada.

4. The timeframe for realizing the benefits of using Ada.

i.I ADA PROJECTS STUDIED (Chart 2)

Ada use within the FDD began in January 1985 with the GRODY

project. As part of the preparation for developing this system,

personnel first participated in a practice Ada project by

implementing an electronic mail system (EMS). These two projects

actually represent a first Ada experience.

After the GRODY project was well under way, two new Ada simulator

projects for the GOES satellite began. GOADA, the dynamics

simulator, and GOESIM, the telemetry simulator, collectively

represent a second major experience with Ada. They are

considered second projects because (i) some team members had

previous experience in developing systems in Ada and (2) these

two projects could draw on lessons learned from GRODY. Not only

were the staffing profiles of the two GOES simulator teams

different from the GRODY team, but the two GOES teams began using

additional software tools available within the DEC Ada

development environment.

F. McGarry
NASA/GSFC
2 of 33

Late in 1987 and 1988, two more projects, UARSTELS and Build 4 of

FDAS began; these projects represent a third distinct Ada

experience. Currently, two more Ada projects are in their early

stages: EUVEDSIM and EUVETELS, but these projects are very early

in their lifecycles and are not yet available for study.

1.2 PROJECT STATUS AND CHARACTERISTICS (Chart 3)

All totaled, Ada has been used on eight projects in the flight

dynamics area. Two projects (EMS and GRODY) are completed; three

(GOADA, GOESIM, and FDAS) are well into system testing; and one

(UARSTELS) is in the implementation phase. The other two

projects (EUVEDSIM and EUVETELS) are in the early requirements

analysis phase. These projects range from nearly 6K to 163K SLOC

in size, where SLOC is total source lines of code including

comments, blanks, newly developed code, and reused code. These

projects have required or are expected to require from 4 to 36

months to complete and had from three to seven people working on

them. Although GRODY lasted for 36 months, it should be noted

that most personnel on this project did not work fulltime on its

development. The small EMS project could have been completed

by 2 or 3 people; but since it was part of the Ada training for

the GRODY project, all GRODY developers participated in some part

of the EMS project.

2.0 ADA EVOLUTION

2.1 TEAM EXPERIENCE AND DEVELOPMENT ENVIRONMENT (Chart 4)

F. McGarry
NASA/GSFC
3 of 33

Of the eight Ada projects currently under way, six projects have

progressed far enough to be studied: EMS, GRODY, GOADA, GOESIM,

FDAS, and UARSTELS. All six of the projects studied have been

staffed with personnel with a similar level of software develop-

ment experience, an average of 4 to 5 years. Except for UARSTELS,

each project also had personnel with a similar level of experi-

ence in the application. To date, the SEL has not observed any

impact due to differences in team experience between projects.

It is also too early to observe any differences in the effect of

varied levels of Ada experience on project development. The

number of people who are formally trained in Ada and/or the

number of those who have been on previous Ada projects is still

too small. Only the first Ada projects have been completed.

Some personnel on those projects have contributed to current,

ongoing projects; however, there are not enough people in the

environment, even on the most recent Ada projects, to signifi-

cantly change the ratio of experienced Ada personnel to those

with no Ada experience.

The use of tools has evolved somewhat from the first Ada

projects. The practice Ada project (EMS) had only rudimentary

tools available (compiler, linker, editor). GRODY made use of

the DEC symbolic debugger (SD), and the Configuration Management

System (CMS). All subsequent Ada projects are using these tools

as well as the Language Sensitive Editor (LSE). Project person-

nel have also developed some additional tools in house to create

package bodies and templates for the associated subunits they

need to develop.

F. McGarry
NASA/GSFC
4 of 33

2.2 SOFTWARE CHARACTERISTICS (Chart 5)

Traditionally, software size has been described in terms of the

lines of code developed for the system. However, software size

can be expressed by many other measurements (Reference 8),

including

i. Total physical lines of code (carriage returns)

2. Noncomment/nonblank physical lines of code

. Executable lines of code (ELOC) (not including type

declarations)

. Statements (semicolons in Ada, which include type

declarations)

Chart 5 describes the size of the Ada projects in the flight

dynamics area using these four measurements. The FORTRAN

project, GROSS, was also included in the summary for comparison.

The GROSS project is the FORTRAN implementation of the GRODY

project, and the GRODY/GROSS comparison has been detailed in

previous papers. Because the GOESIM and UARSTELS projects are

both telemetry simulators, they are also very similar in terms of

their functionality. These two Ada projects are estimated to be

between 75 and 78 thousand lines of code (KSLOC). In comparison,

a typical telemetry simulator in FORTRAN consists of

approximately 28 KSLOC.

Unless one counts only Ada statements, these figures tell us that

the use of Ada results in many more lines of code than the use of

FORTRAN. The increase in lines of code is not necessarily a

F. McGarry
NASA/GSFC

5 of 33

negative result. Rather, it is simply that the size of the

system implemented in Ada will be larger than an equivalent

system in FORTRAN. It is also clear that a precise definition is

needed of what is a line of code in Ada and what code is included

in that measurement.

Throughout the years of developing similar systems in FORTRAN in

the flight dynamics area, the average level of software reuse has

been between 15 and 20 percent (Reference 9). FORTRAN projects

that attained a 35 percent or higher level of reuse of previously

developed code are rare. After the first Ada project and with

only 5 to 6 years of maturing in the environment, Ada projects

have now achieved a software reuse rate of over 30 percent. This

is already greater than the typical FORTRAN project. The

UARSTELS project is expected to consist of more than 40 percent

reused code. This trend of increasing software reuse is very

promising.

2.3 LIFE-CYCLE EFFORT DISTRIBUTION (Chart 6)

The GROSS project followed the typical FORTRAN life-cycle effort

distribution (Reference i0). Specifically, a small amount (8

percent) of the total effort expended on the project was spent

during the pre-design or requirements analysis phase of the

project; 27 percent of the effort was spent during the design

phase, 40 percent during the code implementation phase; and 25

percent during the system testing phase. For the Ada projects,

significant changes to the life cycle have not yet been observed.

However, the Ada life cycle is changing slightly with each

project and may soon show a different life cycle than that

expected for a FORTRAN project. The life cycles for the second

and third Ada projects are shifting slightly to show more design

F. McGarry
NASA/GSFC
6 of 33

time required with less system test time.

As the Ada environment matures and the SEL learns more about Ada,

the life cycle is expected to continue shifting in the direction

that the early literature has reported (Reference ii): more time

spent in the design phase and less time in the system test phase.

FORTRAN projects could assume the reuse of the life cycle based

on past experience. This life cycle cannot be automatically

reused in Ada, and more study is needed to determine the duration

and products of each phase of an Ada project.

With the current projects, the SEL has not observed significant

changes to the life-cycle phases. However, effort by phase is

time driven. The SEL also collects effort data by activity

across all phases. With this data the amount of effort spent on

such activities as design, coding, and testing is very different

than the distribution of effort on activities for FORTRAN

projects. Much more time is spent on design for the Ada

projects, but more analysis is still needed in this area.

2.4 ADA COST/PRODUCTIVITY (Chart 7)

Discussions on Ada productivity are somewhat confusing because so

many interpretations exist of software size measures in Ada.

Depending on the measurement used and an individual's

inclination, one could determine that Ada is either as good or

not as good as FORTRAN. Using the total lines of delivered code

as a measure, the first, second, and third Ada projects show an

improving productivity over time, and they show a productivity

greater than FORTRAN. However, considering only code statements

(excluding all comments and continued lines of code), the results

are different. An increasing productivity trend remains in the

F. McGarry
NASA/GSFC
7 of 33

Ada projects over time, but the Ada projects have not yet

achieved the productivity level of FORTRAN projects.

Within the flight dynamics environment, many software components

are reused on FORTRAN projects. Since no Ada components existed

previously, the first Ada projects were, in fact, developing a

greater percentage of their delivered code than the typical

FORTRAN project. Based on a past study by the SEL and on

experience with FORTRAN projects, personnel concluded that reused

code costs around 20 percent of the cost of new code (ref 15).

The cost of reused code lies in the effort needed to test,

integrate, and document the reused code in the new system. Using

this estimate, reusability can be factored into software size by

estimating the amount of developed code. Because of the

differences in cost of new and reused code, developed code is

calculated as the amount of new code plus 20 percent of the

reused code. With software reusability factored in, the

productivity for developed statements on Ada projects is

approximately the same as that for FORTRAN projects.

The trends in Ada productivity are very positive. Again, lines of

code must be clearly defined when discussing productivity. Using

total number of lines as the measurement of software size, Ada

productivity was always greater than FORTRAN productivity.

However, due to the greater number of lines of an Ada project

compared to a similar FORTRAN project, this measure can be

misleading.

2.5 USE OF ADA FEATURES (Chart 8)

F. McGarry
NASA/GSFC
8 of 33

It is difficult to tell whether a given project really used the

Ada language to its fullest capacity. Different applications may

or may not need all the features available in Ada. However, in

an effort to achieve some measurement in the use of the features

available in the Ada language, the SEL identified six Ada

features to monitor: generic packages, type declarations,

packages, tasks, compilable PDL, and exception handling. The SEL

then examined the code to see how little or how much these

features were used.

The numbers of packages and type declarations were normalized to

the size of the system, and the number of generic packages was

divided by the total number of packages in the system. As seen

in chart 8, the use of four of these features has evolved over

time: generic packages, type declarations, packages, and

tasking. Compilable PDL and exception handling did not show any

trends. Perhaps it is too early to see results in these areas.

The average size of packages (in SLOC) for the first Ada projects

is much higher than the average size of packages for the second

and third Ada projects. This is due to a difference in the

structuring method between the first Ada projects and all

subsequent Ada projects (Reference 4). The first Ada projects

were designed with one package at the root of each subsystem,

which led to a heavily nested structure. In addition, nesting of

package specifications with package bodies was used to control

package visibility. Current Ada projects are utilizing the view

of subsystems described by Grady Booch (Reference 12) as an

abstract design entity whose interface is defined by a number of

separately compilable packages, and nesting of Ada packages is

limited to generic package instantiations.

F. McGarry
NASA/GSFC
9 of 33

The use of generic packages from the first to the current Ada

projects seems to be increasing. More tham a third of the

packages on current projects are generic packages. This higher

use of generics reflects both a stronger emphasis on the

development of verbatim reusable components and increased

understanding of how to effectively utilize generic Ada packages

within the flight dynamics area.

The use of strong typing within these software systems is also

increasing, as measured by the number of type declarations per

KSLOC. With experience, developers are more comfortable with the

strong typing features of Ada and are using its capabilities to a

fuller extent.

The use of tasking shows the most dramatic evolution over time for

any particular Ada feature in the flight dynamics environment;

its use has decreased markedly. The first Ada project, GRODY,

contained eight tasks. However, from lessons learned on the

GRODY project, personnel on subsequent Ada dynamics simulator

projects have reduced that number to four tasks. Current

telemetry simulator projects require no tasks at all. In the

area of tasking, experience has shown that extensive use of this

Ada feature is not appropriate for many applications. Although

more extensive use of tasking might be very appropriate for other

applications, the use of this Ada feature has definitely changed

as project personnel have learned to use tasking only in those

situations that are appropriate.

2.6 RELIABILITY, ERROR/CHANGE RATE AND CHARACTERISTICS (Charts 9

and i0)

F. McGarry
NASA/GSFC
10 of 33

The SEL measures software reliability by the number of changes or

error corrections made to the software. For Ada projects,

software error and change rates show a very positive trend. While

it is too early to observe a definite difference from the FORTRAN

rates, the reliability of the Ada projects is at least as good as

that of FORTRAN projects. The error and change rates on the Ada

projects are also declining over time, a promising trend. The

types of errors also show an evolution from first through third

Ada projects.

On a typical FORTRAN project, design errors amount to only 3

percent of the total errors on the project. For the first and

second Ada projects, 25 to 35 percent of all errors were

classified as design errors, a substantial increase. However,

for the third Ada project, design errors are dropping signifi-

cantly and are estimated to be approximately 7 percent. This

rate is close to what is experienced on FORTRAN projects and

clearly shows a maturation process with growing expertise in Ada.

Much of the literature on Ada reports that the use of Ada should

help reduce the number of interface errors in the software

(Reference 13). In our FORTRAN environment, about one-third of

all errors on a project are interface errors. On our first and

second Ada projects, the number of interface errors was not

greatly reduced. Around one-fourth of the errors were interface

errors. However, with current projects, the SEL is now seeing

the expected results: interface errors are decreasing.

"Errors due to a previous change" is a category of errors that

was caused by a previous modification to the software. The first

Ada project showed a large jump in the number of these errors

compared to those using FORTRAN. However, all subsequent Ada

F. McGarry
NASA/GSFC
I 1 of 33

projects show a rate for "errors due to a previous change" very

similar to the FORTRAN rate. Many things probably contributed to

this initial jump in the error rate: inexperience with Ada,

inexperience with Ada design methodologies, and a nested software

architecture that made the software much more complex. Again,

the error profile is decreasing with the maturity of the Ada

environment.

3.0 OVERALL OBSERVATIONS ON THE IMPACT OF ADA (Chart ii)

In summary, many aspects of software development with Ada have

evolved as our Ada development environment has matured and our

personnel have become more experienced in the use of Ada. The

SEL has seen differences in the areas of cost, reliability,

reuse, size, and use of Ada features.

A first Ada project can be expected to cost about 30 percent more

than an equivalent FORTRAN project (Reference 14). However, the

SEL has observed significant improvements over time as a develop-

ment environment progresses to second and third uses of Ada.

The reliability of Ada projects is initially similar to what is

expected in a mature FORTRAN environment. However, with time,

one can expect to gain improvements as experience with the

language increases.

Reuse is one of the most promising aspects of Ada. The proportion

of reusable Ada software on our Ada projects exceeds the propor-

tion of reusable FORTRAN software on our FORTRAN projects. This

result was noted fairly early in our Ada projects, and our exper-

ience shows an increasing trend over time.

F. McGarry
NASA/GSFC
12 of 33

The size of an Ada system will be larger than a similar system in

FORTRAN when considering SLOC. Size measurements can be

misleading because different measurements reveal different

results. Ratios of Ada to FORTRAN range from 3 to 1 for total

physical lines to 1 to 1 for statements.

The use of Ada features definitely evolves with experience. As

more experience is gained, some Ada features may be found to be

inappropriate for specific applications. However, the lessons

learned on an earlier project play an invaluable part in the

success of later projects.

OF POOR QUALITY

F. McGarry
NASA/GSFC
13 of 33

REFERENCES

it Software Engineering Laboratory (SEL), SEL-85-002, Ada

Training Evaluation and Recommendations, R. Murphy and

M. Stark, October 1985

. F. McGarry and R. Nelson, "An Experiment with Ada--The GRO

Dynamics Simulator," NASA/GSFC, April 1985

. SEL, SEL-81-104, The Software Engineering Laboratory,

D. Card, F. McGarry, G. Page, et al., February 1982

• --, SEL-88-003, Evolution of Ada Technology in the Flight

Dynamics Area: Design Phase Analysis, K. Quimby and

L. Esker, 1988

. --, SEL-88-001, System Testing of a Production Ada Project:

The GRODY Study, J. Seigle, L. Esker, and Y. Shi, November

1988

, C. Brophy, S. Godfrey, et al., "Lessons Learned in the

Implementation Phase of a Large Ada Project," Proceedings of

the Sixth National Conference on Ada Technology, 1988.

• SEL, SEL-87-004, Assessing the Ada Design Process and Its

Implications: A Case Study, S. Godfrey and C. Brophy,

July 1987

. D. Firesmith, "Mixing Applies and Oranges: Or What Is an

Ada Line of Code Anyway?," Ada Letters, September/October

1988

F. McGarry
NASA/GSFC
14 of 33

. Computer Sciences Corporation (CSC), IM-88/083(59 253),

Software Reuse Profile Study of Recent FORTRAN Projects in

the Flight Dynamics Area, L. Esker, January 1989

i0. SEL, SEL-81-205, Recommended Approach to Software

Development, F. McGarry, G. Page, et al., April 1983

ii. V. Castor and D. Preston, "Programmers Produce More With

Ada," Defence Electronics, June 1987

12. G. Booch, Software Enqineerinq With Ada. Menlo Park, CA:

Benjamin/Cummings Publishing Company, 1983

13. The MITRE Corporation, Use of Ada for FAA's Advanced

Automation System (AAS), V. Basili et al., April 1987

14. B. Boehm, "Improving Software Productivity," Computer,

September 1987

15. SEL, SEL-84-001, Manager's Handbook For Software

Development, W. Agresti, F. McGarry, et al., April 1984

F. McGarry
NASA/GSFC
15 of 33

o I

THE VIEWGRAPH MATERIALS

FOR THE

F. MCGARRY PRESENTATION FOLLOW

t_
"O

IlL
OO

m

iii

111

O3
W
0
Z Z
wO

wO

__>, 53
0
0

rr"
CC 0

o

nn
LL

INTENTIONAkLYBLAN_

F. McGarry 8
NASA/GSFC

19 of 33 ,7

m

._1

F. McGarry
NASA/GSFC
20 of 33

8

121

4-1

m

m

O
m

!-

i

i

¢/)
I-
O
Ill

O

O
c_o

wo0
_v

w_

UJ C'_

LJ.Jt_

c_

LU

m

F-.

a

cO

UJ t"_

crJ_

i

m

0

LLI

i-
a
z

i

i

LIJ

U.IV;. _ _-J

"0

ILl

I--

0

o
fflu-

Oz

I_1 -

0

"r'-

co
cO

b_

tr_

CN

C.)

F. McGarry g
NASA/GSFC
21 of 33

F. McGarry
NASA/GSFC
22 of 33

<

D

a
I.kl
¢/)

I---

la,i

Z
O
ev
I

-Ic
,Ic

Z
Ill

Z

O_

W

z__,

¢D

III W
(.9

Z

W

O

l,tl

¢.O

ttl

X ZWOO

Ill ,_w
I-- I--

0
111

0

n

Z

-Ic
O

4:

a
0
CC

co

O'J

a

0
(.9

CO
W
0
r_

Z

0

a

c_

CO
,-.I
111
l--

r_

_s
IJJ
,_I
rn
0
n-"
O..
W
0
I--
0

r_

_d
,,-I
._IW
_cr7
_r7

rT_
w_
o-I-
Oz
.JIJJ
w_
111_S

7-121

I---*

F. McGarry _.
NASA/GSFC ,--r"
23 of 33 c_

F. McGarry
NASA/GSFC
24 of 33

ffl W
W a

z _

_ _ ,,4 _=.

n
111
CO

111
oC

f_

p_
<

F. McGarry 8
t,,,NASA/GSFC ,-

25 of 33

kO

ro

F. McGarry o.
NASA/GSFC
26of 33 o

<
r.)

U

0 0 0 0 0 14_ 0 iZ)
_" CO 04 _" 04 ,-" -- d

,I
0 v

0_,_ (9 0
0 0. 0

I gg

F. McGarry o
NASA/GSFC ,--

27 of 33

< Qo o
It.

t6 ¢6

S

tl.I ¢.O

orr"
I n-
O w

0

F. McGarry
NASA/GSFC
28 of 33

_i

<

-!8 28_

,,=,

8

d
z

_!

0
I--

c)
0
_.1
CO
-It

0

0

T.--

a

0"_

,<

r..)

2

nr

I I I I

0 0 0 0 0 0 0 0

g_

W.l =

o

C)

_....

F. McGarry o
NASA/GSFC_
29 of 33

F. McGarry
NASA/GSFC
30 of 33

_.1
u

¢rl w

..j _ W
0 W W N
o rr" n-

LU

I11
LI.

"ID
<
ii
0
Ill
CO

,--t
,-I

E-t

C)

O3
_J
W C_I 0 0 u")

>- _ _ _,_
y _

z o_ _. .
O_ T--

l.l-I

;I

LOlW 71

zOco

n W_Oo • _1_ _I_ _
LU I-- rl
Z -J

n

W n

m o0 w O LD
,_ 0 (D (.9 C3 --z
-- II Z _ Z O_ --]n w 0 -_ w n

z cc (D co oz
0 w _- _ <_ x<
0 CO cO n _- WI

[u
0

nO

WO_

-- W

<o._ <
=oh
on-

_.I

U..._1

o<o
w_-
mo_m
2D Z _.1
• • @

F. McGarry
NASA/GSFC ,-
31 of 33 c-.

¢xl
,-I

,<

o

t_
73

iii

t--

t'r"

v

t_
"O

O "'
I--- w-
¢,O ca

Z

v
tl.I

A

O <
,_ ,,,

O3

v

O
A

III'F(9O
v

!.1.1

F. McGarry
NASA/GSFC
32 of 33

tt_

wi

O3

O3

O
nr"
rr
I.H

Z

O0
I.U
n

co
o'J

¢o

co
c_

+_x
ii

_x
I.I_0

I--

O>-
I--03
>-,_
OOI.U
<_>-
u-lrr

ILl
_>

co

O3
n-
O
n-
OC

LH
0
<
It.
n-
LI.I
k-
Z

0 I.I.I

LU z
'
a-i-

0

rr>
wu.I

rr
_a.

"i-
k-

zz ,_<w_
-r-_o7,,<
o0o,,=,8
LLIn" i_. rr_.I

rr,_ ::) 09

• • Q

O

t'q

<

r,.)

¢J_ ¢.o
< c6
a
LL

U

>

I.a O
O co
¢.5

<
a
< ea
0 to
(5

>-

a oo

0 co
rr

I

o

o

Z o

o n---"° _: _°g

W
Z
._1

_J
<
b-
0

0

CO

cO

c,i

wa
Z_a
"i0

III o
a_o_
O+

ua_:
>W
Iii
az

cO
CO

oO

oO

04

0
c_

Z
III

0
0
z
0
:7

(3")

eO

0

(_

0_!
CO

CO
l--
Z
LL!

LLI
I--
<
I--
GO

0
O_

co
oo

_5

oa
(30

co
d

rJO
!--

_0

Z
W

O.
0
_J
LU
>
LU
E3

"0
<

z
<
o:
l--Z
_0
O_
u-O

_ (..) Z

<z

,--I

E_
P(

L)

0

F. McGarry o

NASA/GSFC _,
33 of 33

